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Abstract

Two approaches to modelling water exchange and conservation are

considered with the purpose of creating a basis for the develop-
ment of ecological transport models for transient zones such as

the Kattegat.

The first approach is a matrix model - a time-discrete Markov model
of water exchange with & %-lunar-day as the physical time-base.
Primary data are the differences in average salinities between
different positions and the situation is exemplified by considering
the Kattegat-Baltic system as a simple, two-layer channel and using

stationary box-exchange principles.

The second approach is a series of separate‘autoregressive models
of water conservation exemplified by considering stationary, first-
order time-discrete processes, AR(l). Each model relates to a given
position (box) and the input data used are time-series of 10-days-
average of salinities for the position in question.

A few results are given in order to compare the two approaches

and to indicate their applicability but this paper is primarily
to stimulate discussion.
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INTRODUCTION.

The development of mathematical models of biomass production
in the marine food-chain are of considerable interest for

the fisheries, and for entrophication and pollution studies.

But, to be reliable and usefui, such models must, as a
minimum, include a description of the biological rules
that govern species interaction and this, again, more or
less implies thet, a complete account of phosphorus (or,
some other measure of biomass equivalents) is kept. The
result of that ecosystem models of species interaction
attain a large size even in cases in which the decriptions
of chemical and physical processes are cut down to a mini-
mum; see the Andersen and Ursin North Sea Model.

The remarks above indicate some of the.reasons for initi-
ating the presentkstudy. The need for developing appropriate,
physical transport models to serve as a skeleton for the
descrlptlon of blologlcal processes in partlcular primary
and secondary productlon is recqplsed by most’ ecosystem
modellers. But, on the other hand, such an integrated
approach cannot be performed by operating with a large
model of species interaction for each column of water in
some selected sea grid, that is, if we want to avoid
extremely costly, non-operational, supra-sized ecosystem
models. ‘ _

The solutions to these problems clearly lie in synthetized
approaches to the essential interactions of physical, che-
mical and biological processes at various scales, and this,
unfortunately, requires a level of interdisciplinary

knowledge which the present authors do not possess.

But, before we forget about all the relevant biological
and chemical processes for production in the sea, it may
at last be noted that these processes represent very K

different time scales {or time constants)



And for this reason alone it seems useful to develop simple
transport models that are able to say something about the
positions in the sea at which it is likely to find a given

mass of water after various periods of time.

This is what this paper is all about.. But there is another

reason for restricting ourselves to simple models - the

present authors are not physical oceanographers! All

constructive criticism will be most wellcome.
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2. TIME-DISCRETE MODEL PRINCIPLES APPLIED.

2.1 THE MATRIX APPROACH TO MODELLING EXCHANGE OF WATER.
The'sea is partitioned into compartments or boxes. During a
tidal period, the series of event are perceived as follows:
(1) water is flowing into the individual box, (2) a mixing |
of the water masses in the box takes place when the tide 1is
changing, and (3) water flows out of the box. Thus, the L
time-unit ,u, is half a lunar day (a M2 period), i.e.
u = 12.42 hours = __l__ years (1)

705.7
The individual box must be so large that the exchange volumes
between adjoining boxes in a time-unit are small compared to
the box volumes. On the other hand, the individual box should
not be so large that the assumption of mixing within a time-

unit 1is unreasonable.

P time

s

Fig 1 Time-notation in the matrix model. Time-period no.t
starts at time (t-1l)u and ends at time tu. The time-unit u
is a "mixingtime". :

In this time-discrete approach the continuity relations

for box m read - in a first order approximation
S, (m) AV(m)+V,(m) AS(m) =>§m[st(x-) 0, (x,m) - S (m) 0_(m,x)]

Av(m) = 3 [Qt(k,m) - thm,x):l
. x$m

(2)

(3)



Here Q4 (x,m) denotes the exchange volume (the transfer
coefficient), i.e. the volume of water flowing from box x

" into box m during the time-period t. Si¢(m) and Vi(m) are
the (average) salinity and the volume of water of box m at

the'siqrt of time-period t, respectively. Thel designates

the changes during the time-unit, i.e.

Avim)

Vt+l(m) - Vt(m) (1)

AS(m) = Sp,j(m) - s (m)

Define

'a(X,m) = Q(sz) ; X;‘:m . (5)
V(m) ‘

a(m,m) =1 - S alx,m) ‘ ’ (6)
xX4m :

Where the subscript t has been omitted for the sake of
brevity. Dividing Eq.(2) with v(m), utilizing Eqg.(3), and insectind

the,a—ekments defined above, yield

Sppp (M) = st(m)at(m,m)+:ESt(m)at(x,m)‘ | (7)

X$m

That is, in matrix notation,

Se+1= Sel¢ : (8)

Where S is a row-vector giving the box salinities and A
is a square, exchange matrix having a{x,m) as element in

the x'th row and the m'th colunn.

The exchange matrix may be interpreted stochastically
because all its elements are non-negative and the column-
sums are one. Let us consider the m'th column which repre-

‘sents box m. The diagonal element, at(m,m),gives the volume-

fraction of box m (at the start of time-period t) that

remains in the box (i.e. conserved) during time-period no.t.



'Theboff—diagonal element At(x,m) gives the volume-fraction QLLCx
m that is exchanged with water from box x during time-period

No. t.‘Thus, the off-diagonal elements in column m denote

the origin of the water that has been exchanged in box m

during a time-unit. In a stochastic interpretation we may

say that a water molecule selected at random from box m'

(in time-period t+l) originates from one of the boxes (in
time-period t?hgkbabilities given by the m'th column of the

exchange matrix, Bg.

In the example considered in this paper interest is focused
on the simple stationary case. That is, the box salinities

are considered constant from one time-period to the next:

St+l(m) = St(m) = S(m) | - (9) -

and we then want to determine the corresponding stationary

exchange-pattern:
Q¢ (m,x) = Q(m,x) , ) ~ : (10)

In other words, we must solve Egs. (2) and (3) which now

take the simple form

S s(x)o(x,m) = s(m)Z0(m,x) = sS(m)S o(x,m) o (11)

XEm X$m X$m

The equations express that the net supply of salt and water
to box m i§ zero during a time-period. A unique solution,

of course, only exists if the number of unknown Q'S is in
balance with the number of equations.

With a complete set of Q and V values, the constant exchange
matrix, A, is determined from Egs. (5) and (6). Thus, accor-
.ding to Eq. (8), the exchange of water as time elapses

is simply computed as A,A2, A3,---, At. That is, the exchange-
of-water-situation is ;o;plegely.det;rmined by A and the
underlying time-unit w, The columnsums in At are one and
the individual elements of the m'th column g;ve the origin
(t time-units back in time) of the water-make-up of box m

at time tu. After a long time (i.e. t-» %) the original box m
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water is completely replaced by the permanent sources, ie.
freshwater and oceanwater (represented as boxes with infinite
volume). The elapse timé required to reach this equilibrium
situation with a given accuracy is determined by the eigenvalues
of A.

2.2 The autoregressive approach

The primary data input to the stationary matrix exchange model

is the differences in -awverage salinities between different

boxes. Thus, only the information on the average salinity for

a certain period of time is utilised for each box in question.
The autoregressive approach is independént bf’the matrix approach
in the sense that only information on changes with time in the

salinities at a fixed position (box) is utilised.

To illustrate the principles, we consider the simplest possible
model - a stationary, first order,. time-discrete autoregressive

process:

St(m) = P(m) + C(m)St_l(m) + Zt(m) ) ‘ (12)

As in the‘previous sextion, -t denotes a time-period which, how-.
ever, is not necessarily of duration half a lunar day.

The model simply states that the-average salinity in box m in
period t is a linear function of the average salinity in the

box for the previous period of time plus a random deviation, Zt(m)i
The process is assumed to be stationary, i.e. the Zt's, t=1,2,...,
are assumed to be stochastically independent and identical distr-

ibuted variables with mean zero.

In the example consider in this paper, the autoregressive para-
meter C(m) is simply estimated from the salinity time-series
by the autocovariance of first order (i.e. the Yule-Walker esti-

mate) .

In the present context, C(M) is intébreted as the fraction of

water in the box that is conserved (i.e. not exchanged) from one

period of time to the next.



3. AN EXAMPLE.

The box partitioning of- the Kattegat—Baltic fiord system is
depicted in Fig. 2 and input data are given in Table 1. Box
volumes for Kattegat are calculated by U. Ehlin from the SMHI
special data base. Salinities are from K.P.Andersen's data
analysis of the Danish Belt Project. Inflow of rivers are taken

from Falkenberg and Mikulski (1974) and Svansson (1975).

The box system comprises 30 unknown Q's but‘only'20 equations
(i.e. 10 finite boxes) are available. It is therefore necessaryv
to 1ntroduce 10 Q-constraints. We assume that the inflow of

ocean water primary takes place in the bottom channel and similar
that the outflow of the brackish Baltic water occurs primarily in
upper channel. The reversed exchange pattern is then assumed to
equal fixed fractions (0¢K<l) of the related Q's in the primary

"flow pattern. As an example
Q(l0,8) = K(10,8)Q(8,10)

The 10 K's are divided into four groups - the K's being equél.
"within groups - see Table 3. One group comprises K(3,5) and

K(5,7) and these are put to zero always. The value of the K's

in the threeother groups are denoted by a,b.and c, respectively.
Autoregressiﬁe parameters are estimated based on the 1972 time-
series of lO—days—meén—salinities (Panish Belt Project), averaging
over daily measurements at 0,5 and 10 m depths. The light vess.
~at Laesoe N. and Aalborg Bay are ancored in the box 10 area

whereas Anholt ‘N. ‘and Kattegat SW are located in the box 8 area.

4. RESULTS AND DISCUSSION

If not stated otherwise, the Q-constants are a=0.3, b=0.2 and
c=0.1. ' ’

In Table 2 water transport on a yvearly basis - computed from
~the matrix model - is shown together w1th the results from the
Aage J. C Jensen model - see Fig. 3. Here a=b=c=0 because Jensen'S

model is a one way running model The agreement in the results is
not conv1nc1ng..



Table 3 gives water conservation in percent on a 128 time-period
basis (66.24 days), i.e. the diagonal elements a128(m,m), m=
2,3,...,11 of the matrix 5128. The case a=b=0.7 and c=0'produced
a negative Q value. It ap;ears that water consefvation, apart
from box 5 and box 11, is not affected very much by the choice

of Q-constrain values.

Approximately 1% of the large Baltic boxes (2 and 3) are exchanged
on a 2 months basis. Boxes 4 to 7 serve as buffers between the
Baltic and Kattegat. In Kattegat, the water»éxchange in the »
upper boxes takes place much faster than in the bottom boxes(i.e.
below the halocline which is set to 10 m). 9% of the initial

water in box 8. is still present after 2 months. In box 10 the:
figure is only about.3%. Fig. 4 gives a better picture of the
decline in water conservation as time eiapses. The results are

in reasonable good acﬁordance with the autoregressive model -

the straight lines on the Figure.

The off-diagonal elements in the matrix provides information on
the origin of the water masses. Fig. 5 shows that the contents
of box 8 water in box 10 increases to a maximum of 22% after
17.5 days. Below the halocline, the inflow of North :Sea - Skage-
rak water resulté also in 22% box 1l water in box 9, but this
maximum is first reached after 60 days. Considerations of this
type may be useful in relation to the consequences of sudden

events such as outslip disasters or extreme plankton blooms.

After 1.5 years all the Kattegat boxes contains less than 1% of
otherAsoﬁrces than the permanent sources - including Baltic waters.
The content of Baltic water in the Kattegat boxes reaches its
maximum aftef 1l to 12 years after which it declines and is less

than 1% - in all boxes - after 190 years.

'Rgturning to water transport on a yearly baiss, Table 4 shows

the water exchange through thé 5 vertical sections - see Fig. 2
and the map in Table 1 for reference - as outflow from/ inflow to
the Baltic, and the resluting net outflow. The fact that the'nét
outflow ié independent of the choice of constants (i.e. a,b and c)
only reflects that the model reproduces the constant freshwater

input with reasonable accuracy. As regards the inflow and outflow,

it seems obvious that the effect of incfeasing constants is that



"the mill is grinding faster". Soskin finds the outflow through
the Danish straits to 1188 km3/y and the inflow to 1660 km3/y.

We are not quite sure but find it most reasonable to relate these

figures to section III.

Very ‘few data on.mixing processes in Kattegat are available to
calibrate the matrix model. The only real conservative tracer A

- salt: =t has already been used as input. However, the bottom
temperature is a fairly conservative parameter. We focus on box 9.
The temperatures 'in-.the surrounding -boxes (7,8 and 11) are appro-

ximated by second order Fourier expressions:

T =T + k

4 ) sin(dP) + k,cos(2dP) + k,sin(2dP) (13)

cos(dP) + k2 3

_Tdis the temperature on day No d of the calender yearﬁand T the
annual mean temperature.P is a constant, 2T/365.24. The k's were
estimated from monthly mean temperature data from Laesoe'N (box 11);
Anholt N (box 8 and 9) and Kattegat SW (box 7). We then assume .
that the temperature - starfing at day 45 - in boxes 7,8 and 11

are given by these estimated models. The temperature in box 9

starts on day 45 at the Anholt-N-estimated-value. But from day

45, onwards, the box 9 temperature is computed in time-steps:of

half a lunarvday using the matrix model with the temperature of

box 7,8 and 11 as input, i.e. the temperature in box 9 is computed

by "mixing box 7,8 and 1l temperatures" according to the exchange

matrix.

The results of these calculations are plotted in Fig. 6. The
agreement with the estimated Anholt N model, Eq.(13), is fairly
good apart from the descending part of the curves. Perhaps the
latter disagreement is due to the fact that the transport of heat
from the deep layertho the surface depends less on the mixing
processes than the transport the opposite way. At any rate, con-
sidering thai'monthly meansvare not suited for estimating the
maximum and that Anholt N is ancored in the northeast-corner of

box 9, we should not go too far in the interpretation of Fig. 6.
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Table 1. Input data to

m O O O >

v(2)
v(a)
v(6)
v(8)
V(1Q)

u = 12.42 hours =

the box model

Inflow of river water’

km3/y
A Q(1,2) 471.4
B a(1,4) . 4.0
c Q(1,6) 2.0
D a(1,8) 5.0
E Q(1,10) 19.1

Inflow of Sea Water from
the Limfjord Q(14,10)
approx. 4 km3/y

Salinities

5(2) =
5(4) =1
5(6) =1

m O 0O @© >

7.50%
2.13%
8.10%

5(8) =21.56%
5(10)=26.16%

5(12)=33.10%

Limf jord...

Box Volumes

15.000.0
94.0
92.0

100.3
105.3

km3
km3
km3
km3
kmS

Step time

1
705.7

v(3) = 6.200.0

v(5)
v(7)
Vv(9)
S V(11)=

years

25.0"
146.0
135.9
141.3

5(3) = 11.50%
5(5) = 18.20%
5(7) = 29.06%
5(9) = 32.28%

5(11)= 33.667
5(13)= 34.75%
5(14)= 25.00%

km3
km?
km
km*
km3;



Table 2. .

' Water transport pr. year.in kmd

Aage J.C.Jensen ~ 14 box model
1 000 Co 802 Q(2,4)
600 . 331 Q(5,3)
701 1 068 ' Q(5,4)+Q(7,6)
296 , 789 . -Q(4,5)+Q(6,7)
1 405 1 087 Q(6,8)
905 o . 610 Q9,7 _
2 268 11716 ©Q(21,10)+Q(9,8)
To272 317 © Q(10,11)+Q(8,9)
3 401 1 974 - Q(10,12)
2 901 .1 468 B Q(;B,ll)
a » b » C=0 :
[N
/{‘ 1 Anholt N.Light-vessel \
» /2 P -.- .:.. ... T--.
/0' ..;.. \ox 9 calculated‘ .' ’
. from model
& : ¢
6 o
4 4
o 0 250 30 Daxs

"Fig.6. Temperatures near the bottom at light
vessel Anholt N, compared with tempera-
tures calculated from the box model



Table 3.

constants

a b
0 0
0.2 0.2
0,3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0e2 0.2
0.3 0.2
0.5 0.5
0.6 0.5

c

Q.1
0.1
0.2
0.3

a = Kqpo,8

K

Q
u

4,2

7.9

3,5

©c O O O O O

98.4
98.5
98.5
98.7.
98.8
98.9

98.5
98.5
%8.8
98.8

K12,10

6,4
9,11

97.5
98.1
98.5
98.8
98.8
99.8

‘98,1

g98.1

99,3
99,3

~

8,6
Ki1,13

Water Conversation o/o after 128 periods

4
15.0
12.1

10.8

‘9-53
' 8.26
6.91

12,2

12,2
8427
8.27

10.2

box no

.2 6
3,10 10.0,
3.24 10.1
3,72 10.1.
5417 9.99
10.2 9.79
32.4 9.49
3.25 10,2
3.25 10.1
10,2 9.84
9.82

7
40.4
4349

4644
49.7 .

54.3 .
61.0 -

42.0

4200 :
©49.9

47.6

.8
T.94

8.74 .

8.97
9099
9,10

9.01

8487

- 9.04

9,24
9.48

9
2845
33.4
37.0
41.7

48.0
57.2 -

30.6

3308

40.9

4502 o

10
2.97
3.28

3.39

3.48

3456
'3.64

3.30
3.49
3463
3.90

11
12.1
18.5
23.6
30.6
40.5
54.5

15.4
19.9
30.9
39.0




Table 4.
Water Exchange through the Sections

Section Qutflow Inflow net. Qutflow

I 806.9 km®/y 332.8 km®/y 472.0 km® [y a=0
1I 816.9 "  342,9 "  475.0 " b=0
111 1089.3 "™ . 605.1 " 477.1 " c=0
v 1341.4 " 857.3 " 482.1 "
v 1976.8 " 1472.5 - 505.3 "
1  904.6 . M 433.5 " 471.6 " a=0.3
i1 937.7 " 462.,2 " 475.6 " b=0.2
111 1323.8 " 847.2 " 477.5 " c=0.1
v 1712.1 " 1230.0 " 482.5 "
v 2253,7 " 1748.5 " 505.7 "
1 1119.7 " 648.6 " 4716 " a=0.6
II 1206.8 " . 73l.4 " 475.6 " b=0.5
111 1847.7 "  1370.1 " 477.5 " c=0.3
v  2263.6 " 1781.5 " .« 482,5 "
-y 2446.7 " 1941.5 " 505.7 "
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